SOUTHWICK CE PRIMARY SCHOOL

CALCULATION POLICY

Subtraction

Reception Year

- Calculations mostly use real objects. Simple recording using sketches and written numerals is modelled by the teacher.

Year 1

- Practical apparatus is used (counters, cubes, coins) and a 'number sentence' is recorded:

$8-5=3$

- Objects are sketched and then crossed out to represent 'taking away' (objects are often grouped in 5 's to help children visualise numbers more clearly):
$\phi \varnothing \varnothing \phi \varnothing \quad \phi 000$

$$
9-6=3
$$

- Number lines are provided to support 'counting back' by hopping down one step at a time (pointing with finger).

Year 2

- Children begin to draw their own number lines:

Year 3

- Children draw their own empty number lines (lines without all the digits marked in)
- They 'bridge' through 10's:

47-9
Taking 7 from 47 is easy: I land on 40 . I
know that $7+2$ is 9 so I've got another 2
still to take away. That takes me to 38.

38

- A 'difference' can be calculated by adding on:

66 The difference between 53 and 39? I'll count up from the smaller to the bigger number. I can bridge through multiples of 10 . Altogether there's 14 between them. 99

$$
53-39=14
$$

- Numbers are 'partitioned' (split up):

$$
112-30
$$

$$
\begin{array}{ll}
100+12-30 & \begin{array}{l}
66 \\
\text { This is abit tricky as I'll cross the } 100 \\
\text { boundary. I'll partition } 112 \text { to make } 100 \\
\text { plus } 12 \text {. Now I can subtract } 30 \text { from }
\end{array} \\
100-30=70 & \begin{array}{l}
100 \text { (that makes } 70 \text {) and put back the } \\
12 \text { to make } 82.99
\end{array} \\
70+12=82 &
\end{array}
$$

$$
112-30=82
$$

This recording represents a series of mental steps. Each step stands alone and is recorded on its own line. The steps are not connected with the = sign (because they're not equal).

- 'Formal' recording is still horizontal (as a 'number sentence' - see Year 1, above).

Year 4

- 'Adjusting' is used where helpful, and is recorded on an empty number line (one without every number marked in):

$$
194-39=155
$$

663
39 is close to 40 , which is a multiple of ten so I can handle that easily. I'll take 40 from 194; that's 154. If IVe taken away 40 that's one too many so I'll add 1 back to give 155.

99

- 2- and 3-digit numbers are rounded to estimate answers:

$$
\begin{aligned}
& 725-477 \\
& \\
& 66 \text { Roughly speaking this is: } 700-500 \\
& \text { So an answer of about } 200 \text { will be right. } 99
\end{aligned}
$$

- 'Counting up' is extended to larger values, always bridging through hundreds and tens boundaries where helpful:

432-397

66 I'll count from the smaller to the bigger number. I'll bridge through the hundreds boundary (400). I don't need to break up what's left: one big hop to 432, making a difference of 35 altogether.

99

- Tens-and-Units numbers or Hundreds-Tens-and-Units numbers are 'decomposed' (broken into component parts):

124-79

This approach is long-winded (in the example above it would have been more efficient to subtract 80 and adjust by adding 1) but it sets the scene for the formal written method:

- The formal written method for subtraction (see below) is introduced.

Year 5

- Vertical recording, illustrating decomposition (breaking into component parts) in alternative ways:

$-\frac{20+7}{40+7}$
or

As learners rely less and less on the 'in-between steps' this quickly becomes the familiar formal written method. Children speak of 'exchanging' from higher columns (the potentially confusing notion of 'borrowing' is not used):

Year 6

- The continued need to use jottings to support mental methods of subtraction is emphasised where helpful
- Existing methods are extended to larger values and modified slightly to handle decimal numbers (ensure columns are lined up either side of the decimal point)
- Estimation, to check the size of answers, remains crucial (especially when using a calculator)
- No wholly new methods of subtraction are employed.

